For Favour of Posting

Department of Mathematics

The Institute of Mathematical Sciences

數學系

數學科學研究所

The Chinese University of Hong Kong

香港中文大學

(Part of MIST program)

Phone: (852) 3943 7988 • Fax: (852) 2603 5154 • Email: <u>dept@math.cuhk.edu.hk</u> (Math. Dept.) Room 220, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Minimal hypersurfaces in manifolds with Ricci lower bound

Professor Qi Ding Shanghai Center for Mathematical Sciences Fudan University

<u>Abstract</u>

Let N_i be a sequence of (n+1)-manifolds of Ricci curvature $\geq -n$ and the unit ball $B_1(p_i)$ in N_i has volume $\geq v > 0$. Suppose $B_1(p_i)$ converges to a metric ball $B_1(p_{\infty})$ in the Gromov-Hausdorff sense. Let M_i be a minimal hypersurface in $B_1(p_i)$ through p_i . Suppose the normalized volumes of M_i are uniformly bounded. In this talk, I will talk about the possible limits M_{∞} (of M_i) in $B_1(p_{\infty})$ in the induced Hausdorff topology using Cheeger-Colding theory. One of main tools is the distance function from M_{∞} . As an application, there is a Frankel property on cross sections of a class of metric cones, which is useful in proving certain Poincare inequality.

Date:8 October 2021 (Friday)Time:10:30am – 11:30am (Hong Kong time)ZOOM link:https://cuhk.zoom.us/j/91805734715

All are Welcome